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ABSTRACT: The determination of diffusion coeflicients of pure compounds in water at infinite dilution is of utmost interest in
chemical and environmental engineering, especially wastewater treatment processes. In this work, the artificial neural network-group
contribution (ANN-GC) method is applied to represent and predict the molecular diffusivity of nonelectrolyte organic compounds
in water at infinite dilution and 298.15 K. A total of 4852 pure compounds from various chemical families has been investigated to
propose a predictive model. The obtained results show the squared correlation coefficient of 0.996, root-mean-square error of about
0.02, and average absolute deviation lower than 1.5 % for the calculated or predicted property from existing experimental values.

I. INTRODUCTION

During the past few decades, global environmental concerns have
generated great interest in different industries.’ Among these
concepts, wastewater treatment is drastic due to the fact that water
is one of the most vital and imperative substances in human life.
Numerous types of water motion transport exist within a natural
water sample, but they can be divided into two general categories:
“advection” and “diftusion”. Generally, a combination of both
groups is involved. However, the most important one is diffusion.”
In 1855, Adolf Fick progosed the following equation to describe the
diffusion mechanism:*

aCy

Jax = — Dap— - (1)

where ], is mass flux of substance A in the x direction, Dyg is the
diffusion coefficient of A in B, and C, is the concentration of the
substance A.

The most significant factor to consider for the determination
of the diffusion coefficient is that the experimental values of this
property are not always available especially for new chemical species
applied in modern industries. On the other hand, experimental
measurements of such properties may be expensive and time-
consuming. Hence, general and reliable models are required for
development with the aim of reducing significantly the required
experimental work which is expensive and time-consuming,

The presented techniques so far for evaluating the binary
liquid diffusion coefficients are based on the calculation of the
diffusion coefficient of solute A in solvent B, which is diffusing at
infinite dilution (D°p).*> This parameter implies that each A
molecule is in an environment of essentially pure B. For
engineering purposes, D°,p is assumed to be a representative
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diffusion coefficient even for concentrations of A of 5 to 10 mole
fraction.?

Wilke and Chang® were the first to correlate the diffusion
coeflicient of solute A in solvent B at infinite dilution. They
modified the Stokes—Einstein relation using the molecular
weight of the solvent, temperature, viscosity of the solvent, molar
volume of the solute at its normal boiling point temperature, and
dimensionless association factor of the solvent as the parameters
of the correlation. They compared the results of the presented
correlation with experimental values of the diffusion coefficients
of 250 binary mixtures containing water, methanol, and ethanol
as solvents at different temperatures and obtained the average
absolute deviations of around 10 %. Good reviews of proposed
modifications of this correlation®* especially for the case that
the solvent is an organic liquid can be found elsewhere.” It has
been shown that, although these correlations have brought about
increase of the accuracy of the original equation results, none of
them have been widely accepted among the researchers.>

In 1975, Tyn and Calus'® related the diffusion coefficient of
solute A into solvent B to the molar volume of the solvent at
normal boiling point temperature, parachors of the solute and
solvent, temperature, and viscosity of the solvent. They used the
relation between the parachor and the surface tension to evaluate
the required value of the parachor parameter. However, their
proposed correlation has some limitations®; for example, it is not
applicable to viscous solvents. Calculations of diffusion coeffi-
cients at infinite dilution for a number of systems show an
absolute average deviation of 9 % for this correlation.> However,
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this correlation needs parachor values as one of the parameters.
Unfortunately, experimental values of parachor may not be
available for most of compounds of interest. Furthermore, the
group contribution methods available in the literature for their
evaluation do not cover many of chemical species. A similar
approach has been pursued by Hayduk and Minhas,'" who used
more experimental data to develop such a correlation. They
reported an absolute average deviation of 10 % for the same
systems investigated by Tyn and Calus.'® This correlation is
generally applied by the researcher for the evaluation of diffusion
coefficients of ordinary pure compounds in aqueous solutions.

Another attempt has been made by Nakanishi'” in 1978. He
correlated the values of the diffusion coefficients of chemical
substances with molar volumes of solute and solvent, tempera-
ture, and viscosity of solvent. This correlation contains also four
other factors, which are defined for investigated chemical families
including alcohols, glycols, organic acids, highly polar materials,
and paraffins in the original article. The values calculated by this
correlation for a number of solute—solvent systems show an
average absolute deviation of about 13 %. Recently, Gharagheizi
and Sattari’ have proposed a QSPR (quantitative structure
property relationship) model, in which the diffusivity coefficients
of 320 pure compounds in water have been calculated. They
reported the squared correlation coefficient of 0.98 for the
obtained results.

Although most of the aforementioned correlations have the
advantage of possible application for the calculation of diffusion
coefficients of chemical compounds in two or three different
solvents including water, methanol, and ethanol at infinite
dilution, they have several drawbacks:

1. They need the knowledge of the values of several quantities,

for which the experimental values are not always available.
In the case that additional estimation techniques are used,
they may induce more errors in final calculation results.

2. They generally do not cover wide ranges of chemical
compounds from various chemical families. Therefore, they
are not so general and comprehensive.

3. The average deviations of the results are about 10 %. These
deviations may lead to further unreliability of the calcula-
tions/predictions of the diffusivity amounts of solutes in
desired solvent, which is a significant factor especially in
wastewater treatment processes.

4. Calculations of the model parameters are not generally easy
for complicated models such as QSPR ones.

Regarding the preceding drawbacks, more general, reliable,
and comprehensive methods are needed to calculate or predict
the diffusion coeflicients of various chemical compounds from
wide ranges of chemical families in water diffusing at infinite
dilution. In this work, the artificial neural network-group con-
tribution (ANN-GC) method is used for this purpose.

Il. MATERIALS AND METHODS

A. Materials. The accuracy and reliability of models for the
representation and prediction of physical properties, especially
those dealing with large number of experimental data, directly
depend on the quality and comprehensiveness of the applied data
set for their development.'® The aforementioned characteristics
of such models include both the diversity in the investigated
chemical families and the number of pure compounds available in
the data set. In this work, we used the database prepared by
Yaws,'* which is one of the most comprehensive sources of

physical property data for chemical species, for example, diffu-
sion coefficients of pure nonelectrolyte organic compounds in
water at infinite dilution and 298.15 K. The values of these
diffusion coefficients for 4852 investigated pure compounds are
available upon request to the authors.

B. Development of New Group Contributions. Having
defined the data set, the chemical structures of all 4852 none-
lectrolyte organic compounds have been analyzed. Conse-
quently, 148 functional groups have been found to be more
efficient for the representation and prediction of the diffusion
coefficients of pure compounds in water diffusing at infinite
dilution at 298.15 K. The functional groups used in this study are
presented in Table 1. Besides, their numbers of occurrences in
pure compounds used in this work are extensively presented as
Supporting Information. These chemical groups are used as the
proposed model parameters.

C. Generation of the ANN-GC. The next calculation step, and
perhaps the most significant one, is to search for a relationship
between the chemical functional groups and the molecular
diffusivity of chemical compounds at infinite dilution and
298.15 K. The simplest method for this purpose is the assumption
of the existence of a multilinear relationship between these groups
and the desired property (here is the diffusion coefficients of pure
compounds).”>*® This technique is a similar method used in the
most of classical group contribution methods.'” Several calculations
have shown that the application of the mentioned methodology for
the current problem brings about poor results. Consequently, the
nonlinear mathematical method of artificial neural networks (ANNs)
is investigated. Artificial neural networks are extensively used in
various scientific and engineering problems'>'#0~*

All of the 148 functional groups and also the diffusion
coefficient values of pure compounds are normalized between —1
and +1 to decrease computational errors. This can be performed
using maximum and minimum values of each functional group for
input data and using maximum and minimum values of diffusion
coeflicients for output parameters. Because of the fact that we face
with a large range of diffusion coeflicient values for different
compounds, these values are generally normalized between —1
and +1 to prevent truncation errors. Besides, this procedure, which
is done in optimization process, is performed to obtain the para-
meters of the neural networks (W), W, by, b, as shown in Figure 1),
and it has no effect on the model results. Later, these values are again
changed to the original diffusivity coeflicient values, which are finally
used as the inputs and reported as outputs of the developed model.
Later, the main data set is divided into three new subdata sets
including the “training” set, the “validation” set, and the “test” set. In
this work, the training set is used to generate the ANN structure, the
validation (optimization) set is applied for optimization of the model,
and the test (prediction) set is used to investigate the prediction
capability and validity of the obtained model. The process of division
of main data set into three subdata sets is performed randomly. For
this purpose, about 80 %, 10 %, and 10 % of the main data set are
randomly selected for the training set (3882 compounds), the
validation set (485 compounds), and the test set (485 compounds).
The effect of the allocation percent of the three subdata sets from the
data of main data set on the accuracy of the ANN model has been
studied elsewhere.*”**

As a matter of fact, generating an ANN model is the determi-
nation of the weight matrices and bias vectors."> As mentioned
earlier and as shown in Figure 1, there are two weight matrices
and two bias vectors in a three layer feed forward artificial neural
network (FFANN): W, and W,, by, and b,."*'®?°"* These
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Table 1. Functional Groups Used to Develop the Model

No. 1D Functional Groups Comments No. ID Functional Groups Comments
C
esters (aliphatic)
«erminal primary C(sp3) Y = Aror Al (not Hy
PN Y = any terminal atom or 20 bwo2o A / Al = H or aliphatic group linked through C
1 DWooL Y Y heteroaromatic group (i.c. H, X, OH, NH2, cte.)
Y Y— O\
¢ c=—0 esters (aromatic)
21 pwozl A/ Y = Alor At
r
TN total tertiary C(sp3)
2 Dwa02 Y c Y =H or any heteroatom HzN\
¢ primary amides (aliphatic)
2 pwo Al = H or aliphatic group linked through C
AN Y—HN
total quatemary C(sp3) secondury amides (aliphatic)
3 DWO003 C C uemay o \c =0 Y ArorAl (not Honot €= 0)
23 bwo23 / Al'= H or aliphatic group linked through C
¢ Al
Y. Y Y. c
c Ve \c c e \Y s /
fing sccondary C(sp3) Y——N tertiary amides (aliphatic)
4 DWO004 Y = H or any heteroatom \\ Y = Ar or Al (not H, not C = 0)
24 Dwo24 /c=o Al = H or aliphatic group linked through C
Y\ v ¢ c\ e ¢ .
/C\ /C\ X
c c C Y N
] s ring tetiary Clsp3) 25 DWO25 c—o0 acyl halogenidos (aliphatic)
Y = Hor any heteroatom /
Al
X
C Cc \
\c/ 26 DWO26 c=0 acyl halogenides (aromatic)
N
c c A,/
6 Wi 1\/\ ring quaternary Cisp3) H N
c=—0
H 7 owo N / aldehydes (aliphatic)
| H
o ; N\
7 DWO007 AN unsubstituted benzene C(sp2) c—o0
I 2 f— / aldehydes (aromatic)
Ar
/ A \
H ¢ o ket {aliphatic)
etones (aliphatic
| 29 DW029 AI/ ¥
C, substituted benzene C(sp2)
8 DW008 S Y = carbon or any heteroatom y\
ketones (aromatic)
| oz 3 pwoso /C =0 Y = Alor A
Ar
C. C
FF N —v
N DWO09 | non-aromatic conjugated C(sp2) \
/C Y carbonate (-thio) derivatives (Y = O or S)
C. ™ 31 DWO31
X —_—Y
C
/ Y terminal primary C(sp2) H ~. .7 H
c=—c ¥ = any terminal atom or heteroaromatic N e ‘;‘“‘““ ("“P:"’:';CL hroush C
10 DWOI0 AN group (ie. H, X, OH, NH2, efc.) 32 pwo2 | (o oa)m group ke fhrove
Y A
¢ H H
/ aliphatic secondary C(sp2) N,
1 DWO1 1 C=—C ¥ = H or any heteroatom N )
\ 33 DWD33 | primary amines (aromatic)
Y
Ar
/ ¢ H Al
» oWl c=—c¢ aliphatic tertiary Csp2) ~ N Ve
AN secondary amines (aliphatic)
c 34 Dwo Al = aliphatic group linked through C
Al (notC=0)
s pwon allenes groups
H ~ /Y
terminal C(sp) ¥ = any terminal atom or N sccondary amines (aromatic
14 DWol4 heterazromatic group (i.e. H, X, OH, NH2, etc.) 5 owos I byt
non-terminal C(sp) Ar
15 DWOLS Y = C or any non-terminal heteroatom A A
) lphaio \N/ tertiury amines (aliphatic)
isocyanates (aliphatic fary,
6 Dwols yanates (alipl 36 Dwoss Al = aliphati group inked throvgh C
(ot C=0
Al
17 PWO17 isocyanates (aromatic)
HO\ tertiary amines (aromatic)
37 Dwos? Y = Aror Al (not C = 0)
12 PWOIS /C o carboxylic acids (aliphatic)
Al
N hydrazines
HO\ 38 DWO38 Y=CorH
c=—0
o pwors / carboxylic acids (aromatic)
Ar 39 DWO3Y nitriles (aliphatic)
1743
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Table 1. Continued

No. 1D Functional Groups Comments No. ID Functional Groups Comments
/O nitro groups (aliphatic) X
/ Al'=H or aliphatic group
40 DWO040 Al——N, linked through carbon
\0 61 DWo6l I X CHRX2
H
/0 nitro groups (aromatic) Ar = aromatic group linked
/ through carbon
a1 DW041 Ar—N\ X
° cl
bydroxyl groups CR2X2
2 DWoa2 A—O—H Al = aliphatic group linked through any atom 62 Dwoe2 C/ | \)(
aromatic hydroxyls c
43 DWO043 Ar——0——H Ar = aromatic group linked through any atom X
H =¢ R=CX2
I 63 DW063 \x
Cc—C—O0—H X
primary alcohols
44 DWOd4 | |
H c CRX3
64 DWO64
c/ | Sx
T X
c—C—O0—H
5 DWos I secondary alcohols 65 DWO6S Ar—X X on aromatic ring
H
X
T \c/
46 DW046 < _I —o—H tertiary alcohols 66  DW0G6 @ X on ring C(sp3)
—_— ethers (aliphatic)
47 DW047 A o Al Al = aliphatic group linked through X
C (oL C =0, not C#N) I
67 DWO067 ¢ X on ring C(sp2)
ethers (aromatic) \
48 DWoLS Ar——0—Y Y = Aror Al (not C =0, not C#N)
Y
| | I anhydrides (thio-)
49 Y=0orS
DW049 t—0—o-0 X
68 DWO0S8 (l: / X on exo-conjugated C
—C—s—-H FNF
S0 DW0s0 thiols
6 DW06Y ; ; Aviridines
s Dwosl C—s—¢C sulfides N
52 bwos2 c s s c disulfides v
70 DWO(70 Oxiranes
Q
p 0 o " 71 DWO071 ( ; Thiranes
¢ s
sulfones
53 DWOS3 o—"—o
3 72 DWO072 ! > Pyrrolidines
ifl N
—Y—s—Y—
54 DW054 || sulfates (thio- / dithio-) (Y =OQ or S)
Y 73 DWOT3 Oxolanes
ﬁ O
—Y—P—Y—
ss DWOSS | phosphates / thiophosphates (Y = O or S) 74 DW074 tetrahydro-Thiophenes
‘|' S
X 75 DWOQ75 Pyrroles
| :N:
C.
C/ ~ h CH2RX
56 DWO0s6
H
% 7 DWO76 / \ Furancs
57 DWO057 | CHR2X
Lo} O
c | ~~u
C
77 DW077 Thiophenes
X
| s
C. CR3X
58 DWOs8 TN AN
[ C
c AN |
H 78 DWOT8 | P Pyridines
R=CHX
59 DW0s9 c=c/ P N
AN N
X
/C 79 Dwom Som of the hydragens linked to all of donor toms for H-bonds (N and O)
o= R=CRX ) )
60 DWO60 =
\x Total Ns, Os and Fs in
the molecule, excluding N with
80  DWO0S0 aformal positive charge, higher acceptor atoms for H-bonds (N, 0, F)
oxidation states and pyrrolyl
form of N
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Table 1. Continued

No. ID Functional Groups Comments

H Y2
| |

wooows T\ %" BT e o

82 DWO82 CH3R/ClI4

83 DW0§3 CH3X

84 DWOS4 CH2RX

85 DWOSS CH2X2

86 DWOS6 CHR2X

87 DWO§7 CHX3

88 DWOSS CR3X

89 DW0S9 CR2X2

90 DWOYO x4

91 DWO9L "H2

92 DW092 =CRX

93 DW093 R--CR-R

94 DW094 R-CX-R

95 DW09S R--Cl--X

96 DW096 R-CR-X

97 DW097

9 DW098

99 DWOYY R-C=X)-X / R-CH#X / X=C=X

100 DWI0O X-C(=X)-X

101 DWI01 H attached to C"(sp3) no X attached (o next €

102 DW102 H” attached to C'(sp3)/ C'(sp2)

103 DWI103 1 antached to C*(sp3) / Ci(sp2) / C(sp)

104 DWI04 H* attached o Clsp3) / Cisp2) / Clsp2) / Clspy

105 DWI0S H autached 10 alpha-C*

106 DWI06 H? attached to C(sp3) with 1X attached to nexi €

n7? DW107 11" attached to C"(sp3) with 2X attached 1 next €

108 DWIOS R attached o Ctsp3) with 3X attached to next €

109 DWI09 H aached to C(sp3) with 4X attached 10 next €

10 DWIIO alcohol

11 DWIL phenol /enol / carboxyl OIT

112 DWIHE2 =0

13 DWII3 ALO-Al

114 DWIL4 ALO-Ar/ At-O-Ar/ R.O.R/R-0-C=X

1S WIS Ot

16 DWIIG R-0-O-R

"7 DwiL7 INESN

118 DWIIY Ar-NH-Al

19 DWIIO RCO-N</>N-X=X

120 DWI20 ARNH/ AN/ A2N-Al/ R.N.RY

121 DWI2l R#N/R=N-

122 DwI22 ALNO2

123 DWI23 Ar-N=X / X-N=X

124 DWIA4 F attached to C'(sp3)

125 DWI25 F' attached to Ci(sp3)

126 DWI26 Fattached 1o C(sp3)

127 DWI27 * attached to C'(sp2)

128 DWI28 F* attached 10 C(sp2)-Cl(sp2) / C'tsp) / C'(sp3) 7 X

120 DWI2S CI attached to C(sp3)

130 DWI30 Clattached to Citsp3)

131 DW131 CF attached 1o C(sp3)

132 DWI3R2 CI attached to C'(sp2)

133 DWI33 CI attached o Csp2)-C'(sp2) / C'(sp) / C

134 DWI34 Bi* ttached to C'(sp3)

135 DWI135 Br' autached 10 C'(sp3)

136 DWI136 Br' attached to Ci(sp3)

137 DWI37 Br* attached to C'(sp2)

138 DWI3S Bi* attached o C¥(sp2)-C'(sp2) / C'(sp) / Cisp3h / X

139 DWI3Y 1* attached to C'(sp3)

140 DW 40 I* attached to C(sp3)

141 DWI4l 1" attached to C'(sp3)

142 DWI42 1" attached to C'(sp2)

143 DWI43 R-SH

144 DWI44 R2S/RS-SR

145 DWI4S R=S

146 DWI46 R-SO2R

147 DWI4T >Si<

148 DWI48 X3-P=X (phosphate)

“The superscript represents the formal oxidation number. R represents any group linked through carbon; X represents any electronegative atom
(O, N, S, P, Se, halogens); Al and Ar represent aliphatic and aromatic groups, respectively; = represents a double bond; # represents a triple bond; --
represents an aromatic bond as in benzene or delocalized bonds such as the N—O bond in a nitro group; .. represents aromatic single bonds as the C—N

bond in pyrrole.
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parameters should be obtained by minimization of an objective
function. The objective function used in this study is the sum of
squares of errors between the outputs of the ANN (represented/
predicted diffusion coefficients) and the target values (experimental
diffusion coefficient values). This minimization is performed by the
Levenberg—Marquardt (LM)*” optimization strategy. There are
also more accurate optimization methods other than this algorithm;
however, they need much more convergence time. In other words,
the more accurate optimization, the more time is needed for the
algorithm to converge to the global optimum. The LM* is the most-
widely used algorithm for training due to being robust and accurate
enough to deal with the considered system.">'**°~ %

In most cases, the number of neurons in the hidden layer () is
firstly fixed, and then the main goal is to produce an ANN model,
which is able to predict the target values as accurately as expected.
This step is repeated until the best ANN is obtained. Generally
and especially in three-layer FFANNS, it is more efficient that the
number of neurons in the hidden layer is optimized according to
the accuracy of the obtained FFANN.'*'%~%

3. RESULTS AND DISCUSSION

An optimized FFANN has been obtained using the aforemen-
tioned procedure for the representation and prediction of the
diffusion coeflicients of 4852 pure nonelectrolyte organic

Input Hidden Layer Output Layer
N7 N\ N

Input e + e 4| Output
/ \ VRN J

Figure 1. Schematic structure of the FFANN used in this study. W:
weight; b: bias.

compounds in water at infinite dilution and 298.15 K. For this
purpose, several three-layer FFANN modules have been gener-
ated assuming numbers 1 through S0 for n (number of neurons in
hidden layer) using the previously described procedure. The
most accurate results without overfitting are observed for n = 4. It
should be noted that this value is not the global value, because the
optimization method used to train the ANN has great effects on
the obtained value.”” Therefore, the developed three-layer
FFANN has the structure of 148-4-1.

The represented and predicted diffusion coefficients are
shown in Figure 2 in comparison with the experimental values.'*
More meticulous investigation of the results show that there are
58 compounds for which the presented model results lead to
more than 13 % (based in Figure 2) absolute deviations from
experimental values.'* It seems that there is no relation between
these compound structures to show some weaknesses in repre-
senting and predicting of the diffusion coefficient values of
related chemical families. Therefore, we may suspect that corre-
sponding experimental diffusion coeflicient values may not be
accurate or may be somehow erroneous because of the existing
difficulties in experimental measurements especially those where
complex chemical structures are involved. For further investiga-
tion of the reliability of such data, we have pursued the following
procedure:

1. Eliminating the outlier data points (58 points) from the

investigated experimental values."*

2. Developing a new ANN-GC model for the representation
and prediction of the remaining diffusion coefficient values
(4794).

3. Prediction of the eliminated outlier data point values using
the new developed model for further checking the relia-
bility of these values.

Figure 3 shows the eliminated outlier set from the main data

set. The results of the new developed model are shown in
Figure 4. More detailed results including the absolute deviation

5]
o

=y - - =y
[ iy o fee)
T T T T

[e]
T

Diffusion coefficients in water at infinite dilution at 298.15 K (Cal /Pred.)
3
T

0 1 | | 1

X% x

0 2 4 3 8

I I )
12 14 16 18 20

Diffusion coefficients in water at infinite dilution at 288.15 K (Exp.)

Figure 2. Comparison between the calculated and predicted results of the first model and experimental values'* of diffusion coefficients of investigated
pure nonelectrolyte organic compounds in water at infinite dilution and 298.15 K. X, training set; +, validation set; O, test set. The unit of the diffusion

coeflicient values reported in the figure is (em?-s71)- 108
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20 T T T T

181

Diffusion coefficients in water at infinite dilution at 298.15 K (Cal /Pred.)
=]
T

0 | 1 Im | |

| | 1 |

D 2 4 6 8

10 12 14 18 18 20
Diffusion coefficients in water at infinite dilution at 208.15 K (Exp.)

Figure 3. Definition of the outlier set eliminated from the main data set. X, training set; -+, validation set; O, test set; [, outlier set; O, test set. The unit

of the diffusion coeflicient values reported in the figure is (em®-s71)-10°

20 T T T T

181

16

141

121

10F

Diffusion coefficients in water at infinite dilution at 288.15 K {Cal /Pred.)

0 1 | | 1

1 |

0 2 4 6 8

|
10

1 1
12 14 16 18 20

Diffusion coefficients in water at infinite dilution at 288.15 K (Exp.)

Figure 4. Comparison between the calculated and predicted results of the second model and experimental values'* of diffusion coefficients of
investigated pure nonelectrolyte organic compounds in water at infinite dilution and 298.15 K X training set; +, validation set; O, test set. The unit of the

diffusion coeflicient values reported in the figure is (cm?-s71)-10°.

ranges of the represented and predicted diffusion coeflicient
values using the first and the second models are reported in
Figure 5. Besides, the statistical parameters of both of the models
are reported in Table 2. As can be observed, the new model leads
to the absolute deviation ranges not to exceed 13 % for the new
sets of data excluding the outliers. Consequently, the average
absolute deviation of the model is about 1.4 % while this value is
about 2.6 % regarding the previous model results. All of the

1747

calculated and predicted results, the number of occurrences of
the 148 functional groups in all of investigated pure compounds,
and the absolute deviations of the represented and predicted
diffusion coeflicients are available as Supporting Information. It is
inferred from these results that most of the calculated and
predicted diffusion coefficient values for outlier (eliminated) data
points (about 59 %) bring about high deviations (over 13 %) even in
the new developed model. Therefore, it can be implied that these

dx.doi.org/10.1021/je101190p |J. Chem. Eng. Data 2011, 56, 1741-1750
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13+ L.SS

12-13 %
11-12 ‘}9
10-11 |‘}é

Absolute percent deviations ranges (%)

2576

0 500 1000

1500 2000 2500 3000

Number of compounds in each range

Figure 5. Deviation ranges of the results of the two developed models over all of the investigated compounds. The upper bars show the second model,

and the other ones indicate the results of the first developed model.

Table 2. Statistical Parameters of the Presented Models

statistical parameter value value

training set the first model the second model

R* 0.982 0.996
average absolute deviation” 2.58% 1.41%
standard deviation error 22 22
mean square error 0.091 0.021
N¢ 3882 3836

validation set

R 0.984 0.996
average absolute deviation 2.59 % 1.37%
standard deviation error 2.2 2.1
mean square error 0.075 0.018
N 485 479

test set
R 0.987 0.996
average absolute deviation 2.60 % 1.47 %
standard deviation error 2.1 2.1
mean square error 0.060 0.024
N 485 479

training + validation + test set

R 0.982 0.996
average absolute deviation 2.58% 1.41%
standard deviation error 22 22
mean square error 0.086 0.021
N 4852 4794

“Squared correlation coefficient. Y %AAD = 100/N ¥N(|Calc.(i)/Pred.
(i) — Exp.(i)|)/(Exp.(i)). * Number of data points.

data points may be among the probable doubtful data with higher
experimental uncertainties, as we have already expected from the
first model results. All of the developed model results regarding the
suspected outliers have been presented as Supporting Information.
The mat file (MATLAB file format) of the new obtained ANN
containing all parameters of the model is also available as Supporting
Information. Also, the instructions for running this developed
computer program have been presented in the Appendix.

To recapitulate, the results imply that the new obtained ANN-
GC model is an accurate method to represent/predict the diffusion
coeflicients of pure chemical compounds in water diffusing at
infinite dilution and 298.15 K. Besides, the comprehensiveness of
the model that is imperative in representation/prediction of physical
properties of large numbers of pure compounds is guaranteed
because it is developed over a diverse set of 4852/4794 pure
compounds from various chemical families. The two preceding
points obviously demonstrate the capabilities of the proposed model
in comparison with the previously presented one based on QSPR

approach.

4. CONCLUSION

In this study, a group contribution-based model was presented
for representation and prediction of the molecular diffusivity of 4852
pure nonelectrolyte organic compounds in water at infinite dilution
and 298.15 K. These conditions are of much interest for wastewater
treatment processes. The model is the result of a combination of
FFANN and GC methods. The required parameters of the model
are the numbers of occurrences of 148 functional groups in each
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investigated molecule. It should be noted that most of these
functional groups are not simultaneously available in a particular
molecule. Therefore, the computation of the required parameters
from the chemical structure of any molecule is simple. For devel-
oping the model, the experimental diffusivity in water values from a
large data set'* containing 4852 pure compounds from various
chemical families were applied. As a consequence, a comprehensive
model was developed to represent and predict the diffusion
coeflicients of many of pure compounds in water although there
are still some limitations. The model has a wide range of applic-
ability, but the prediction capability of the model is restricted to the
compounds, which are similar to those ones applied to develop the
model. The application of the model for the totally different
compounds than the investigated ones is not recommended
although it may be used for a rough estimation of the molecular
diffusivity of these kinds of compounds.

Another element to consider is that the presented model may
be used as a technique to test the reliability of the experimental
data reported in the literature. It was found that experimental
values of diffusion coefhicients for 34 chemical compounds are
among the real outliers of the model and we may consider them
as the data with higher uncertainties than other experimental
values in the data set.

Finally, the average absolute deviation of the model results
from experimental values'* demonstrates the accuracy of the
presented model. It should be noted that the extension of the
model to different temperature conditions requires adequate
data of diffusion coefficients at these conditions. More meticu-
lous experimental works are required to be done for this concept.

B APPENDIX: INSTRUCTIONS FOR USING THE PRO-
POSED MODEL

The model is very easy to apply. Just drag and drop the mat file
into the MATLAB environment (any version) workspace. One
can follow the below example to get a response from the model
step by step:

Assume that one is willing to predict the diffusion coeflicient
of methylcyclopropane in water at ambient conditions using the
developed model. First of all, the group-contribution parameters
should be defined from the chemical structure of methylcyclo-
propane (refer to the Supporting Information). Later, drag and
drop the mat file, and the following commands should be entered
in MATLAB workspace:

methylcyclopropane GCs={I 1 0 2 1 0 ¢ 0 0 06 0 0 0 0 0 0 0 0

0000000000000 O0O0O0C0CO0O006O0O0O0O0 00
00000000 000000000000 06O00600O0O0
o0 0000000001 0000000000060 O00
00008 000000000 0000000O0O0O0O0O0
00000 0¢0000006O0O0O0O0CO0O0CO000O0C0 00 0

D_methylcyclopropane=sim(net,methylcyclopropane GCs).
Therefore, one will observe the estimated log D (natural
logarithm of the diffusivity) as follows: 11.61, where the experi-
mental value for this compounds is equal to 11.62 (approxi-
mately ARD = 0.1 %).

B ASSOCIATED CONTENT

© Ssupporting Information. Calculated/predicted diffusion
coefficients by the presented ANN-GC model accompanied with
absolute deviations of the results from the experimental values
and the number of occurrences of the functional groups in each

molecule. Also, different types of subdata sets have been shown.
Moreover, the outlier set and the developed computer program
have been also presented. This material is available free of charge
via the Internet at http://pubs.acs.org.
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B NOTE ADDED AFTER ASAP PUBLICATION

This paper was published ASAP on April 12,2011. Equation 1
was updated. The revised paper was reposted on April 15, 2011.
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